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ABSTRACT
We show that using a nonconvex penalty term to regularize
image reconstruction can substantially improve the preserva-
tion of object shapes. The commonly-used total-variation reg-
ularization,

∫
|∇u|, penalizes the length of object edges. We

show that
∫
|∇u|p, 0 < p < 1, only penalizes edges of di-

mension at least 2− p, and thus finite-length edges not at all.
We give numerical examples showing the resulting improve-
ment in shape preservation.

Index Terms— Image reconstruction, image edge analy-
sis, image shape analysis.

1. INTRODUCTION

An important task in image processing is to reconstruct an
image from a noisy one. Unfortunately, many processes that
remove noise will alter the characteristics of objects in the
image. A simple example is Gaussian smoothing. Convolv-
ing an image with a Gaussian kernel will remove noise ef-
fectively. However, discontinuities will be removed as well,
resulting in the blurring of object edges.

A noise removal method that remedies this problem is to-
tal variation regularization, also known as the Rudin-Osher-
Fatemi (ROF) model [1]. Given a noisy image f , a grayscale-
intensity function on Ω ⊂ R2, the image reconstruction u is
the minimizer of the following functional:

F (u) =
∫

Ω

|∇u|+ λ

∫
Ω

|u− f |2. (1)

The first term is the regularization term; using total variation
suppresses noise, but allows discontinuities. The second term
is the data fidelity term, which keeps the reconstruction close
to the data. The squared L2 norm is best suited for additive,
Gaussian noise [2]. Choosing the value of the parameter λ
allows one to adjust the relative effect of the two terms.

A drawback of the ROF model for accurate image recon-
struction is the following. Let E ⊂ R2 be a bounded set
with Lipschitz boundary, and let u = χE be the characteristic
function of E. Then

∫
|∇u| is the perimeter of E. It follows

that total variation regularization penalizes the length of ob-
ject edges in an image. Shortening edges will decrease the
regularization term, while increasing the data fidelity term by

an amount that will depend on the area that is altered. The
result is that sharp corners will be rounded, and long, thin
features will tend to be removed, as these changes affect edge
length more than shape area. The extent to which this occurs
depends on λ, the choice of which is usually dictated by the
noise level in the image. One is sometimes forced to choose
between noise removal and shape preservation.

The remedy we propose is to alter the geometric property
to be penalized. We use for our regularization functional

Fp(u) =
∫

Ω

|∇u|p + λ

∫
Ω

|u− f |2, (2)

where 0 < p < 1. We will show in Section 2 that the “p-
Dirichlet integral” regularization term only penalizes bound-
aries of dimension at least 2− p. Since most edges in images
have finite length, penalizing this higher-dimensional prop-
erty of edges will not penalize most shapes. Yet, as we will
see in Section 4, our discrete implementation will still remove
noise.

The cost of this approach is that Fp is nonconvex. Neither
existence nor uniqueness of minimizers is guaranteed. Nev-
ertheless, the algorithm we will demonstrate in Section 4, in
countless examples of all manners of images, has never been
observed to fail to converge, or to converge to a minimum
that, if not unique, was not a suitable reconstruction. More-
over, the convergence of the algorithm, a generalization of
Vogel and Oman’s fixed-point method [3], is rapid.

2. SHAPE BOUNDARY DIMENSION

Let E ⊂ R2, and let u = χE be the characteristic function of
E, having value 1 on E and 0 elsewhere. We will show that∫
|∇u|p = 0 unless the boundary ∂E of E has dimension

at least 2 − p. In particular, if E has finite perimeter and
p < 1, the regularization term of (2) does not penalize E at
all. For this purpose, we define

∫
|∇u|p as the limit of its

discrete approximations, under increasingly fine resolution.
To be specific, we consider a uniform, square grid G with
grid spacing ∆x. Our discretization of the partial derivatives
of u uses simple forward differences, and Neumann boundary
conditions. We have∫

|∇u|p ≈
∑
x∈G

|∇u(x)|p(∆x)2. (3)



∆x

Fig. 1. A portion of the boundary ∂E of the Koch snowflake E of Fig. 4. The squares are those having vertices at grid points,
and that intersect ∂E. The dots are those grid points where the discrete gradient of u = χE is nonzero, those where the segment
to the right or below crosses ∂E. The dots are a subset of the upper-left corners of the squares.

Here ∇u(x) is the discrete gradient at x, with each partial
derivative being of the form

(
u(x+) − u(x)

)
/∆x, with x+

being the next grid point to the right or down. The notion of
dimension we will use is the upper box-counting dimension.
Using the same square grid, let N∆x(∂E) be the number of
grid squares that intersect ∂E (see Fig. 1). Then the upper
box-counting dimension of ∂E is

dim ∂E = lim sup
∆x→0

log N∆x(∂E)
log(1/∆x)

. (4)

Theorem 2.1. Let E ⊂ R2, u = χE . Let 0 < p ≤ 1.
Then the limit of (3) as ∆x → 0 is zero unless the upper
box-counting dimension of ∂E is at least 2− p.

Proof. Suppose dim ∂E < 2 − p. Then we can find r <
2− p such that for all sufficiently small ∆x, log N∆x(∂E) <
r log(1/∆x), or N∆x(∂E) < (∆x)−r.

The key observation is that if the discrete gradient is non-
zero at a given grid point, then the grid square having its
upper-left corner at that point must intersect ∂E (see Fig. 1).
Thus, the number of nonzero terms of (3) is at most N∆x(∂E).
Since the values of u are 0 or 1, we have the upper bound∑

x∈G

|∇u(x)|p(∆x)2 ≤ N∆x(∂E)
(
2/(∆x)2

)p/2(∆x)2.

(5)
For sufficiently small ∆x, this is at most (∆x)−r+2−p2p/2.
Since r < 2− p, (3) tends to 0 as ∆x → 0.

3. NUMERICAL IMPLEMENTATION

To compute a minimizer of (2), we use a straightforward gen-
eralization of the fixed-point method of Vogel and Oman [3].
Consider the Euler-Lagrange equation of (2):

0 = −∇ ·
(
|∇u|p−2∇u

)
+ λ(u− f), (6)

where for convenience we have ignored factors of 1/p and
1/2. We solve (6) iteratively, by substituting the previous it-
erate un−1 into |∇u|, then letting un be the solution of the

resulting linear equation:(
−∇ ·

(
|∇un−1|p−2∇

)
+ λI

)
un = λf. (7)

Also, to avoid division by zero, we approximate |∇un−1| by√
|∇un−1|2 + ε for a small ε (namely 10−6 in the examples

below). We begin the iteration with u0 = f , the noisy image.
We discretize gradients with forward differences (as in Sec-
tion 2) and divergences with backward differences, and use
Neumann boundary conditions.

We do not prove convergence. Moreover, this procedure
can only be expected to produce a local minimum, owing to
the nonconvexity of (2). However, in hundreds of examples
we have always observed convergence, unless ε is too small,
in which case the system (7) can become numerically singu-
lar. We have know way of knowing whether the computed
minimizer is local or global, but in our experience it is always
a sensible reconstruction. Furthermore, the convergence is
rapid. In the examples below, we find 15 iterations to be am-
ple, with each iteration taking under a second for a 100× 100
image, and about 5 seconds for a 512× 512 image, in Matlab
on a 1.8 GHz laptop.

4. EXAMPLES

We present three examples of regularization of noisy binary
images. In each case, we started with a {0, 1}-valued im-
age, the characteristic function of a shape E. We then added
Gaussian noise of mean zero and standard deviation 0.25. The
algorithm of Section 3 was then run with p = 1, 3/4, 1/2, and
1/4. In each case, the regularization parameter λ was chosen
to have the largest value (i.e., the weakest regularization) that
still removed noise. (This is done by trial and error, separately
for each p).

Our first example is a 100×100 image of an astroid shape
with sharp cusps (Fig. 2). We see that with p = 1, the cusps
are cut off, and the contrast near them slightly decreased.



(a) Astroid shape (b) Noise added

(c) p = 1 (d) p = 3/4

(e) p = 1/2 (f) p = 1/4

Fig. 2. The 100 × 100 astroid image has 25% noise added,
then is regularized using (2) with four values of p. The larger
values of p cut off the cusps, and decrease intensity near them.
The smaller values preserve the shape.

With p = 3/4, the cusps are still cut off, but to a lesser de-
gree. With p = 1/2 and p = 1/4, the cusps and intensity are
well-preserved.

The second example is a 112×112 image of a Zia symbol,
with thin rays and thin gaps between (Fig. 3). With p = 1
and p = 3/4, the rays are smeared together, and contrast is
lost. The shape and contrast are well-preserved with p = 1/2,
slightly better with p = 1/4.

The final example is a 512×512 discrete Koch snowflake
(Fig. 4; a zoomed-in version is in Fig. 5). The true Koch
snowflake has a boundary of dimension log 4/ log 3 ≈ 1.26.
Edge details and contrast near the edges are better preserved
with p ≤ 3/4 than with p = 1.

(a) Zia shape (b) Noise added

(c) p = 1 (d) p = 3/4

(e) p = 1/2 (f) p = 1/4

Fig. 3. The 112 × 112 Zia image has 25% noise added, then
is regularized using (2) with four values of p. The larger val-
ues of p smear together the rays and gaps between them, and
decrease contrast. The smaller values of p preserve the shape.
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(a) Koch snowflake (b) Noise added

(c) p = 1 (d) p = 3/4

(e) p = 1/2 (f) p = 1/4

Fig. 4. The 512× 512 Koch snowflake image has 25% noise
added, then is regularized using (2) with four values of p.

(a) Zoomed Koch snowflake (b) Noise added

(c) p = 1 (d) p = 3/4

(e) p = 1/2 (f) p = 1/4

Fig. 5. A 150×150 portion of Fig. 4, right of center at the top.
Edge detail and contrast is better preserved with p ≤ 3/4.


